Online Prediction under Submodular Constraints
نویسندگان
چکیده
We consider an online prediction problem of combinatorial concepts where each combinatorial concept is represented as a vertex of a polyhedron described by a submodular function (base polyhedron). In general, there are exponentially many vertices in the base polyhedron. We propose polynomial time algorithms with regret bounds. In particular, for cardinality-based submodular functions, we give O(n)-time algorithms.
منابع مشابه
Online algorithms for submodular minimization with combinatorial constraints
Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.
متن کاملThe submodular secretary problem under a cardinality constraint and with limited resources
We study the submodular secretary problem subject to a cardinality constraint, in long-running scenarios, or under resource constraints. In these scenarios the resources consumed by the algorithm should not grow with the input size, and the online selection algorithm should be an anytime algorithm. We propose a 0.1933-competitive anytime algorithm, which performs only a single evaluation of the...
متن کاملKnapsack Constrained Contextual Submodular List Prediction with Application to Multi-document Summarization
We study the problem of predicting a set or list of options under knapsack constraint. The quality of such lists are evaluated by a submodular reward function that measures both quality and diversity. Similar to DAgger (Ross et al., 2010), by a reduction to online learning, we show how to adapt two sequence prediction models to imitate greedy maximization under knapsack constraint problems: CON...
متن کاملFixed-Parameter Tractable Optimization Under DNNF Constraints
Minimizing a cost function under a set of combinatorial constraints is a fundamental, yet challenging problem in AI. Fortunately, in various real-world applications, the set of constraints describing the problem structure is much less susceptible to change over time than the cost function capturing user’s preferences. In such situations, compiling the set of feasible solutions during an offline...
متن کاملStructured Convex Optimization under Submodular Constraints
A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimizatio...
متن کامل