Online Prediction under Submodular Constraints

نویسندگان

  • Daiki Suehiro
  • Kohei Hatano
  • Shuji Kijima
  • Eiji Takimoto
  • Kiyohito Nagano
چکیده

We consider an online prediction problem of combinatorial concepts where each combinatorial concept is represented as a vertex of a polyhedron described by a submodular function (base polyhedron). In general, there are exponentially many vertices in the base polyhedron. We propose polynomial time algorithms with regret bounds. In particular, for cardinality-based submodular functions, we give O(n)-time algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online algorithms for submodular minimization with combinatorial constraints

Building on recent results for submodular minimization with combinatorial constraints, and on online submodular minimization, we address online approximation algorithms for submodular minimization with combinatorial constraints. We discuss two types of algorithms and outline approximation algorithms that integrate into those.

متن کامل

The submodular secretary problem under a cardinality constraint and with limited resources

We study the submodular secretary problem subject to a cardinality constraint, in long-running scenarios, or under resource constraints. In these scenarios the resources consumed by the algorithm should not grow with the input size, and the online selection algorithm should be an anytime algorithm. We propose a 0.1933-competitive anytime algorithm, which performs only a single evaluation of the...

متن کامل

Knapsack Constrained Contextual Submodular List Prediction with Application to Multi-document Summarization

We study the problem of predicting a set or list of options under knapsack constraint. The quality of such lists are evaluated by a submodular reward function that measures both quality and diversity. Similar to DAgger (Ross et al., 2010), by a reduction to online learning, we show how to adapt two sequence prediction models to imitate greedy maximization under knapsack constraint problems: CON...

متن کامل

Fixed-Parameter Tractable Optimization Under DNNF Constraints

Minimizing a cost function under a set of combinatorial constraints is a fundamental, yet challenging problem in AI. Fortunately, in various real-world applications, the set of constraints describing the problem structure is much less susceptible to change over time than the cost function capturing user’s preferences. In such situations, compiling the set of feasible solutions during an offline...

متن کامل

Structured Convex Optimization under Submodular Constraints

A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012